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We study the effects of the environment on tunneling in an open system described by a static double-well
potential. We describe the evolution of a quantum state localized in one of the minima of the potential at ¢
=0, in both the limits of high and zero environment temperature. We show that the evolution of the system can
be summarized in terms of three main physical phenomena—namely, decoherence, quantum tunneling, and
noise-induced activation—and we obtain analytical estimates for the corresponding time scales. These analyti-
cal predictions are confirmed by large-scale numerical simulations, providing a detailed picture of the main
stages of the evolution and of the relevant dynamical processes.
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I. INTRODUCTION

The emergence of classical behavior in quantum systems
is a topic of great interest from both the conceptual and ex-
perimental points of view [1]. It is well established by now
that the interaction between a quantum system and an exter-
nal environment can lead to its classicalization, decoherence
and the occurrence of classical correlations being the main
features of this process (for a recent overview see [2]).

One of the most intriguing prospects in quantum physics
is the possibility of observing quantum tunneling on macro-
scopic scales [3,4]. Macroscopic systems are generally open
systems, interacting with an external environment, and in
this context quantum tunneling is qualitative different from
its experimentally verified microscopic analog [5].

The analysis of open systems has led to interesting results,
detailing the dynamics of a quantum system coupled to a
thermal bath with arbitrary temperature. A closed quantum
system described by a state localized around a metastable
minimum should tunnel through the potential barrier with a
well-defined time scale. This tunneling time can be estimated
using standard techniques such as the instaton method [6].
For an open system, on the other hand, it is well known that
the environment induces decoherence on the quantum par-
ticle, its behavior becoming classical as soon as interference
terms are destroyed by the external noise [7]. This transition
from a quantum to a classical behavior is forced by the in-
teraction with a robust environment and takes place at a
given time scale, the decoherence time [8]. This quantity
depends on the properties of the system, its environment, and
their mutual coupling. If the decoherence time is signifi-
cantly smaller than the tunneling time, one would expect that
after classicalization the state should become confined to the
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metastable vacuum, with tunneling being suppressed. The
particle could still cross the barrier but only if excited by the
bath, its energy increasing via thermal activation, for ex-
ample. This process is distinct from quantum tunneling, is
classical in its nature, and should be efficient mostly at high
environmental temperatures.

An interesting question arises: what is the effect on tun-
neling if the particle is coupled to a reservoir at zero tem-
perature? Though in this case there should be in principle no
thermal activation, we know there is decoherence induced by
a quantum environment at zero temperature [2,9—11]. This
would lead to classicalization, and one could conclude that
even at 7=0, quantum tunneling should be inhibited by in-
teraction with the external environment [12].

The study of the effects of an external environment on
tunneling was initiated by Caldeira and Legget [3] who
showed that dissipation inhibits tunneling. Dissipation in the
primary system is not the only result of the interaction with
the external environment. Not only does the bath lead to the
renormalization of the coupling constants and of the fre-
quency, but its dissipation induces fluctuation (noise) on the
system as well [13]. Since this groundbreaking study [3,14],
many other works have looked at the various aspects of the
same phenomenon, arriving more often than not at similar
conclusions [15]. What is even more appealing is the fact
that nearly all studies rely on analytical techniques, either
functional-based approaches or generalizations of instanton-
type calculations. These approaches are based on equilibrium
concepts and may miss important dynamical aspects of the
evolution. In particular, it is hard to treat both tunneling and
activationlike effects simultaneously and to differentiate their
individual contributions to the outcomes.

Since the early works on open quantum systems, compu-
tational power has increased hugely and it is now feasible to
test and extend many analytical results using large-scale nu-
merical simulations. In the context of simulations of open
systems with tunneling effects, the main focus has been on
driven systems, where tunneling between regular and non-
regular islands is of interest [16,17]. In these models, the
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interplay of classical chaos and dissipation bears interesting
effects at the boundary between classical and quantum
mechanics—e.g., the elimination of classical chaos by quan-
tum interference or its restoration by dissipation.

In this article we will concentrate on a simple tunneling
system described by a static Hamiltonian. Specifically, we
will look in detail at the evolution of a particle in a quantum
state localized at one of the minima of a double-well poten-
tial, when coupled to an external environment at both zero
and high temperature. We will present an analytical descrip-
tion of the effects of dissipation and diffusion and estimate
the time scales associated with the distinct physical pro-
cesses governing the dynamics of the system: decoherence,
quantum tunneling, and activation. Using large-scale numeri-
cal simulations we will then be able to obtain a full descrip-
tion of the dynamics of the model and test the analytical
estimates. Moreover, since we will have access to the state of
the system at any time, we will be able to distinguish be-
tween the effects of the several processes mentioned above.

As we will discuss below, we confirm that in the high-
temperature regime, the evolution can be indeed well under-
stood in terms of simple decoherence, tunneling, and activa-
tion time scales. This sheds light on the problem
conceptually and offers a great degree of control over the
behavior of the system. In particular, we will see how the
environment can be manipulated in order to delay or accel-
erate decoherence and how the strength of the bath’s cou-
pling allows activation to be retarded. The estimates pro-
vided can be used in wider situations and hopefully be
generalized to realistic systems with tunneling on macro-
scopic scales. Finally, we will show than in the particular
case of a zero-temperature environment, not only is tunnel-
ing inhibited, but contrarily to what may be naively ex-
pected, noise activation is also observed. Consequently, at
large times after decoherence, the particle has always a non-
zero probability of crossing the potential barrier. We will
discuss how this result can be understood by means of a
classical finite-temperature analog.

The paper is organized as follows. In Sec. II we present
our model and derive estimates of the relevant scales in-
volved. In Sec. III we analyze the high-temperature limit,
showing how decoherence inhibits tunneling and describing
thermal activation in the classical regime. This is done using
both analytical and numerical results. Sec. IV contains a
similar analysis detailing the case of zero environmental
temperature. Finally, in Sec. V, we include our final remarks
and in the Appendix we expand on more technical details of
calculations relevant for the body of the paper.

II. THE MODEL

We will start by considering a quantum anharmonic oscil-
lator with a potential given by V(x)=—1Q%+\x*. This is a
double-well potential with two absolute minima at x,
=+ /\8\ separated by a potential barrier with height V,
=0*/(64\). We will assume that the system is open, mean-
ing that it is coupled to an environment composed of an
infinite set of harmonic oscillators [18]. The complete clas-
sical action for the system and environment is given by
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S[)C, Qn] = Ssys[x] + Senv[‘]n] + Sim[x’ qn]

! 1 1 1
= f ds| =2+ =27 =\t + D —my (62 - 02D
W12t T )

_2 Cnan, (1)

where ¢,, m,, and w, are, respectively, the coordinates,
masses, and frequencies of the environmental oscillators.
The mass of the anharmonic oscillator is set to 1. The main
system is coupled linearly to each oscillator in the bath with
strength C,. This action describes one of the most simple
quantum Brownian motion (QBM) models, which has been
widely used in the study of quantum-to-classical transition
phenomena [7,13].

The dynamics of the nonlinear oscillator can be obtained
by tracing over the degrees of freedom of the environment
and obtaining a master equation for the reduced density ma-
trix of the system, p,(r). We will assume that the initial states
of the system and environment are uncorrelated, with the
latter being in thermal equilibrium at temperature T (possibly
zero) for t=0 (i.e., when the interaction between the system
and environment is switched on). At the initial time, the state
is a product of a given state of system (entirely on the left
well) and a thermal state for the environment. Only when the
interaction is turned on is the system allowed to evolve. The
initial condition is not an equilibrium state of the complete
action. Under these assumptions and using the fact that the
system-environment coupling is small, the reduced density
matrix satisfies the following time-convolutionless master
equation [19]:

pr(t) == i[Hsys’pr(t)] - f dT{V(T)[x(t)’[x(_ T)»pr(t)]]
0
= 1n(D)[x(@),{x(= 1), p ()} ]} (2)

This equation is perturbative, and therefore we will work
with a reduced density matrix which is obtained in second
order of the system-environment coupling. This fact will be
taken into account in all the simulations we will present. We
will work in the underdamped case, which ensures the valid-
ity of the perturbative solutions up to the times we are inter-
ested in [13,17]. Hereafter, let us have the Ohmic environ-
ment in mind and envisage the situation in which y,<#,
which is called the weak-interaction situation and sets the
temporal domain for perturbative solutions. All the results
obtained below are for periods of the evolution well within
the regime for which this approximation is valid [20]. Hy, is
the Hamiltonian for the closed system, and x(z)
=efsys'xe~Msys! the position operator in the Heisenberg pic-
ture. Here and in the following, we will work in units of %
=1. 7 and v are the dissipation and noise kernels, respec-
tively, defined as

7(t) = on dwl(w)sin wt, (3)
0
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ZOE f dwl(w)coth % cos wt, (4)
0

Nw-w,) . .
where I(w)=3,C2 2: : is the spectral density of the envi-

ronment and B=1/T its inverse temperature (with the Bolt-
zmann constant set to unity, kz=1). It is worth noting that
Eq. (2) is valid at any temperature and is local in time, de-
spite the fact that no Markovian approximation was explic-
itly taken. In the next few sections, we will show how the
general master equation simplifies in different regimes, mak-
ing it more tractable for both analytical and numerical tech-
niques.

As discussed in Sec. I, we are interested in studying tun-
nelinglike phenomena. With this in mind, we will look at the
evolution of a state for which the particle is initially local-
ized in one of the sides of the double potential well. In par-
ticular, we take as initial condition for the main system a
Gaussian wave function centered around the left-hand mini-
mum of the potential, x,=—€/8\:

‘Ifo(x) =

(X—Xo)z} (5)

——exp| -
(2770)2()”4 p[ 407

X

The width of the Gaussian is set to o,=1/ \s"ﬁ, correspond-
ing to the vacuum state for a harmonic oscillator with fre-
quency (). At this point we should take into account that
once the main system is coupled to the environment, the
oscillator changes its frequency to a shifted one due to the
coupling. We will set parameters in order that this frequency
shift can be neglected at all times (we will come back to this
point below, when we discuss numerical results at zero tem-
perature). The frequency () is the natural frequency obtained
by expanding V(x) in the vicinity of its minimum x, with
Wo(x); thus, it describes a particle which is “locally” in the
“vacuum.” For the closed system, we expect the state to tun-
nel through the potential barrier: after a tunneling time 7, the
wave function should be approximately given by a Gaussian
with similar width centered on the right-hand minimum of
the potential. The tunneling time can be estimated using stan-
dard techniques. The initial Gaussian is well approximated
by a linear combination of the first two energy eigenstates of
the full potential V(x). Denoting the energies of the symmet-
ric and antisymmetric eigenstates by E, and E|, respectively,
we expect the tunneling time to be given by 7=1/(E,-E,).
However, as the initial condition, Eq. (5), is not an exact sum
of the two eigenstates, there will be a correction in the tun-
neling time. Numerically, as discussed below, we found that
in general 7=3/(E,—E,). The energy difference and corre-
sponding tunneling time can be obtained by a straightfor-
ward instanton calculation [6], the final result being

3 3 (701 [16V0} ©
= =—\/-——exp| —— |
"E-E 8V2v,0°P 30

The expression inside the exponential is the classical action
for the instanton, Sy=(16/3)V,/}.
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III. TUNNELING INHIBITION AT HIGH T

At high temperature the reduced master equation can be
expressed in a much simplified way by means of the (also
reduced) Wigner distribution function on phase space, W
=W(x,p;0) [2,7]:

W= {Hy, Whpp — %x(f W+ 29(1)d,(pW) + D(1) ;W

R, ™)
where
wt)=— % OldT sin(Q7) n(7), (8)
D(t) = f drcos(Qn)v(7), 9)
0
f(t):—éjotdrsin(ﬂr)n(ﬁ. (10)

(1) is the dissipation coefficient, and D(r) and f(r) are the
diffusion coefficients, all of them given in terms of the dis-
sipation and noise kernels defined in Eqgs. (3) and (4). The
first term on the right-hand side of Eq. (7) is the Poisson
brackets, corresponding to the usual classical evolution. The
second term includes the quantum corrections to the dynam-
ics. The last three terms describe dissipation and diffusion
effects due to the coupling to the environment. In order to
simplify the problem, we consider a high-temperature Ohmic

. . 2 A? .
environment; i.e., we take I(w):;yowm, where A is a
high-frequency cutoff which is larger than any frequency in-
volved in the system. In this approximation the coefficients
in Eq. (7) become constant in time: y=1v,, f~1/T, and D
=2v,T. The anomalous diffusion coefficient f is much
smaller than the other ones, and therefore we neglect it in Eq.
(7). Tt is important to note that the high-temperature approxi-
mation is well defined only after a time scale of the order of
1/T~ yy/D. For all cases we will be studying the relevant
period of the evolution lies at much later times, well in the
regime where the approximation holds on.

As discussed in Sec. I, the thermal bath will have two
distinct effects on the evolution of the initial wave packet. In
a regime where the weak coupling to the environment is
strong enough, the diffusion will make the initial quantum
packet decohere, quantum interference terms will be sup-
pressed, and the system will behave classically. After the
decoherence time f,, quantum behavior will be inhibited and
tunneling should not be possible any longer. Because the
initial energy of the particle is less than the barrier height V),
we would expect it to remain localized on the initial side of
the barrier after . On the other hand, since the particle is in
contact with a high-temperature environment, it will “warm
up” and in time its energy will increase. At some time
there will be a significant probability for the particle to cross
through the top of the barrier, via thermal activation. For
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very long times, the system should reach a state of thermal
equilibrium, with the particle being equally likely to be
found on either side of the barrier.

We will now estimate these two time scales. In particular,
we will be interested in understanding how 7 and 7, inter-
play with each other, making the crossing of the barrier more
or less likely at different stages of the evolution.

The decoherence time in the high-7 limit is usually as-
sumed to be inversely proportional to the diffusion term D
and to the square of the spatial extension of the wave packet
L. For our choice of initial conditions we assume that for
early times L can be set to the width of the original Gaussian
wave function—that is, L=20,=2/+2€Q. Using D=27,T we
obtain (in units of A=1) [7]

0
T4y T

(11)

)

Though the result is not exact, with #, being slightly overes-
timated due to the choice of L, its accuracy is enough for our
purposes.

The thermal activation rate for a classical system can be
obtained by working with the classical analog of Eq. (7), the
Fokker-Planck equation:

W ={H . Wheg +2%00,(pW) + D3, W. (12)

Note that after decoherence takes place and quantum terms
become irrelevant for the evolution, Eq. (7) reduces to Eq.
(12). The classical evolution for the average of any physical
observable A(x,p) in this regime is then given by

I(AY = = ({Hyys Alpp) + D{TA) = 29o(pd,A).  (13)

If we take A(x,p) to be the Hamiltonian of the main system,
we obtain d{H)=2v,(T—(p?)). This expression can be fur-
ther simplified by assuming 7 to be much higher than the
relevant energy scales in the problem, V;, and (p?), during the
early stages of the evolution. As a result, the time depen-
dence of the energy of the system is given by

I{H) =2yT — E=Ey+2v,Tt, (14)

where E, is the initial energy of the system. We can then
estimate the thermal activation time fy, to be of the same
order of the time it takes the system to reach, on average, the
energy of the height of the barrier:

(15)

When the energy of the initial state is considerably smaller
than the potential height this reduces to fy,=Vy/(2y,T).
These estimates clearly show that there is a large region of
parameter space where it is possible to have decoherence
taking place before the tunneling time and delay consider-
ably thermal activation. In these cases the particle should
remain confined in the original side of the barrier as long as
t<ty, Ideally we would like to have f, and 7, separated as
much as possible from the tunneling time scale 7—that is,
tp << 7<<ty,. For practical purposes we write
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atD: T= btth' (16)

From the first and last terms we find a restriction on the
parameters of the potential:

V() 1 ((l >
—=—|-+1]. 17

Q 2\b (17
Together with a choice of tunneling time, Eq. (17) fixes the

potential of the main system. The parameters of the environ-
ment can then be set using the first part of Eq. (16):

T=——". 18
Yo 4r (18)
A choice of a>1 and b<<€1 would lead to the desired result,
keeping the particle localized one side of the potential well
for an arbitrary long time.

A. Numerical simulation

Our goal here is to use a numerical simulation to test and
illustrate the suppression mechanism discussed above. In
terms of the notation of Eq. (16) we should favor a system
with large a and small b. Though such values are perfectly
admissible physically, they correspond to a situation which is
hard to tackle numerically. From Eq. (17) we see that a large
ratio of a to b implies a high value for V)/{). This quantity
n=V,/ ) is none other than the semiclassical estimate for the
number of states trapped in the potential well. As we will
discuss below, our numerical method is based on evolving an
equation for the eigenstates, which will be in large number.
Since the tunneling time depends exponentially on n, we will
also be faced with very large integration times. As a conse-
quence we will have to choose “conservative” values for a
and b. Nevertheless, the results will still describe in a con-
clusive way the phenomena described in the previous sec-
tion.

1. Numerical method

The master equation (7) can only be solved by step-by-
step methods up to relatively short times. As a way out of
this problem we resorted to numerically integrating Eq. (2)
on the basis |u) of eigenstates of the Hamiltonian of the
isolated system, Hsys=’§+V(x). In our high-T limit this re-
duces to

p,u,v=_ 2 M,u,vaBpaB’ (19)
aB

where M is time independent. The full expression for M can
be found in the Appendix. We have for notation simplicity
dropped the subindex “r” on p,.

As Eq. (19) has constant coefficients, it can be integrated
up to any time once the coefficients M are numerically cal-
culated. That means that we can write the exact solution of

the master equation (19) in terms of M as

Puv= E (e_Mf),u,VDz,EpaB(O) . (20)
ap

All the difficulty is now shifted to the calculation of the
eigenstates |u) of the system Hy,, the construction of M, and
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the calculation of its exponential. Here problems may arise
since M has dimension N* (where N is the dimension of the
space representing the real Hilbert space of the problem).
Thus N should not be too large. On the other hand, the num-
ber N of states should be large enough to faithfully represent
the system’s Hilbert space: as decoherence couples these
states, the expected quasiequilibrium state resulting from the
master equation should be diagonal in the eigenstate basis.
The master equation tends to mix these states in such a way
that the entropy grows to a level where all states become
occupied with equal probability. This provides a good crite-
rion for the validity of the numerical simulation—in practice,
we will trust the numerical solution of the master equation
only up to times when the entropy S is below saturation—
ie., S<S,=InN.

2. Decoherence inhibits tunneling

We have solved Eq. (19) for the system parameters V,
=100 and Q)=5, which leads to n=20. For this set of param-
eters the estimated tunneling time is 7=4.631 554 03 X 10'°,
We have chosen «@=24.5 and b=0.6282 so that
Y%T=3.9%X 107!, which is a very small value. This is to be
desired so that the system heats very slowly, delaying ther-
mal activation until after the tunneling time. Finally, we ob-
tain the relation between the three time scales 7, ~0.0408 7
and 75, ~ 1.63267.

As the initial state is well expanded by ten eigenstates of
Hgys and n=20, we have chosen a Hilbert space with N=40
which is as large a value of N as we can afford numerically.
The environment high-frequency cutoff is set to A=10A,
=10X102.237 307> A, for all a, B. A,z is the frequency
separation for eigenstates « and S.

For the numerical solution of the isolated system we have
very accurately calculated the eigenstates and eigenvalues of
the H,y, checking that the tunneling time of our initial state
(5) is indeed very close to that estimated by Eq. (6). This is
illustrated in Fig. 1 where we show the time evolution of the
probability of finding the particle in the original well, for
both the isolated and open systems. Starting from unity at ¢
=0, the probability for the former decreases as the particle
tunnels through the barrier, reaching zero when 7= 7. For
longer times (not shown in the figure) the particle tunnels
back and forth between the two wells, and as expected, the
probability is seen to oscillate with a period close to 27. The
behavior of the open system is in marked contrast with this.
The probability of remaining in the original well decreases
but at a much slower rate when compared to the open sys-
tem. As we will see, this decrease is a consequence of ther-
mal activation rather than tunneling, which is suppressed at
very early times. The value of the probability never goes to
zero; neither are any oscillations observed. In fact, the prob-
ability decreases monotonically and for very long times we
should expect it to approach 0.5; when the system thermal-
izes, it is equally probable to find the particle on each side of
the barrier. In the same figure we also show the evolution of
the linear entropy S; of the open system in terms of the
maximum of entropy allowed for the finite space
representing the Hilbert space of the system, In N, S;/In N
=—In[Trp*]/In N. After some time the linear entropy reaches
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FIG. 1. Time behavior of the probability to stay on the left of the
barrier for the open (solid line) and isolated system (dotted line).
Time is measured in units of the estimated tunneling time 7. The
inset shows, for the same time span, the evolution of the linear
entropy of the open system, S;/In N, where N=40 is the size of the
finite space representing the Hilbert space of the problem. For
¢~ 7 the entropy is near saturation, S;/In N=1 (see text).

saturation, suggesting that the dimension of the finite space
(N=40) is too small. As a consequence the numerical results
are less reliable after r~ 7. Nevertheless, it is clear from the
plots that decoherence inhibits tunneling well before this
time.

The qualitative features of the evolution of both the iso-
lated and the open systems are illustrated in Figs. 2 and 3
where we can see, respectively, the probability distribution
o(x,x)=(x|p,|x) and the Wigner function W(x,p) for signifi-
cant times. Again, the contrast between their behavior is very
clear. For very early times (r=0.27), tunneling starts taking
place in the isolated system with o(x,x) becoming nonzero
on the right-hand well of the potential. The same effect can
be observed in the Wigner function, which also shows nega-

2 I H 2
15+ Vig) | 15
8 Ly i
1 ._ A
Sos5; |, L 0.5
ol i A ¥ ] 0
10 5 0 5 10 10 5 0 5 10
2 2
15 15
g 1 1
© 05
0 .
40 5 0 5 10 40 5 0 5 10
T x

FIG. 2. Probability distribution o(x,x) for the isolated (left) and
the open (right) systems for r=0, r=0.17, and r=0.27 (top) and ¢
=0, t=0.57, and =7 (bottom). As a reference, the shifted and scaled
potential V(x) is drawn in all plots.
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FIG. 3. Wigner distribution functions for the
isolated (left) and open (right) systems, for the
indicated times. The horizontal axis corresponds
to x, vertical axis to p. The medium grey shade
on the background corresponds to zero values for
the Wigner function, lighter and darker shades,
respectively, to positive and negative values of
W(x,p).

tive values in the center of the phase space, indicating clear
quantum behavior. For the same times, the open system
shows no signs of tunneling, with the particle strictly con-
fined to the original side of the potential. The spread of both
o(x,x) and W(x,p) increases, as a consequence of diffusion
induced by the environment. As expected, since fj, is very
small for this system, decoherence has clearly taken place by
this time and the Wigner function is strictly positive every-
where. For t=0.57, both the probability distribution and the
Wigner function are symmetric for the isolated system. On
the other hand, the wave packet in the open system has con-
tinued to widen and we see the first signs of crossover above
the barrier. As the tunneling time is reached, though the sys-
tem is still mainly localized on the original well, it has be-
come warmer and the Wigner function explores a large re-
gion of phase space, with thermal activation becoming
significant. Note that since areas of stronger nonlinearity of
the potential are now occupied, one can observe slight nega-
tive valued fringes in the Wigner function. This transitory
behavior is a well-known consequence of the introduction of
nonlinear effects in the system and bares no relation with
tunneling [21]. At this time, on the other hand, the isolated
system has fully tunneled and the wave packet is centered
around the right-hand minimum of the potential.

B. Thermal activation in the classical limit

In this section we will present a numerical example of
classical high-7 thermal activation. Our main goal is to con-
firm that after decoherence takes place, a quantum system,
such as the one studied in Sec. III A, follows the behavior of
a purely classical system, displaying thermal activation.

A classical statistical system is described by the Fokker-
Planck equation (12). Here, instead of solving Eq. (12) di-
rectly to obtain W(x,p), we chose to evolve a very large
ensemble of classical particle trajectories interacting with a
thermal bath via dissipation and noise terms. The equation of
motion for each particle is given by

(1) = = 29px(1) = V' (x(1)) + &), 21

where £ is time-uncorrelated Gaussian noise with variance
(E()&(t")y=y,TS(t—1"). Tt is straightforward to show that an
ensemble of particles, evolving according to the Langevin
equation above, does indeed obey the master equation (12).
The numerical solution of a large number of equations of the
type of Eq. (21) is trivial, offering an alternative to the direct
solution of the master equation as we have done so far. The
initial conditions are generated such that x and p are Gauss-
ian random variables distributed according to the classical
analog of the wave function, Eq. (5):
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E(

FIG. 4. (Color online) Time dependence of the probability of
remaining in the original side of the potential (top) and average
energy (bottom). Time is expressed in units of the thermal-
activation time scale, Eq. (15).

)2
Wo(x.p) = i exp[— % - 2o§p2} . (22

At arbitrary time ¢ we can obtain expectation values of physi-
cal properties by averaging over the ensemble. The Wigner
function W(x,p,) can be determined by evaluating the frac-
tion of particles in the ensemble with position and momen-
tum in the interval (x,x+dx)(p,p+dp).

In Figs. 4 and 5 we show the results of a simulation with
0?=12, V,=23, T=107, and y,=2.5X 107°. Note that choos-
ing the set of parameters used in Sec. III A would lead to
impractical simulation times. The qualitative aspects of the
dynamics of the two systems should be similar, though, with
the classical simulation illustrating the generic properties of
the thermal-activation process.

16

-16
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The thermal-activation time as estimated by Eq. (15) is
given, for this set of parameters, by 7;,=390. In Fig. 4 we
show both the probability of finding the particle on the left-
hand side of the potential and the mean energy of the system.
As expected, when t=1y, the energy is of the order of the
height of the potential barrier. The probability at that time is
P~0.7. We simulated a series of similar processes with a
wide range of parameters and found that Eq. (15) holds very
well over several orders of magnitude of the quantities in-
volved. In particular, we found that the “noncrossing” prob-
ability at r=ty, is always in the range P=0.65-0.75. The
probability observed in the quantum simulation of Sec. III A
for t,, is within this range. This result should be taken quali-
tatively, though, since 7, is reached after entropy saturation
has taken place. The overall evolution of P(r) in the classical
case follows very closely that for the quantum system after
tp, with the probability decreasing monotonically and ap-
proaching 0.5 for large values of .

In Fig. 5 we have the phase-space probability distribu-
tions (the classical Wigner function) for significant evolution
times. Throughout the evolution W(x,p)>0, as expected,
since the Fokker-Planck equation conserves the positivity of
the distribution. As time progresses the initial Gaussian
packet widens, its energy increasing and allowing a larger
fraction of the ensemble’s particles to explore further regions
of phase. For r=t;, when, as defined, the average particle
energy equals the potential height, thermal crossing of the
barrier starts to be significant. It is interesting to note that for
this period of evolution, the separatrix of the phase space
shows a high particle density on the right side of the poten-
tial. This confirms that the particles crossing the barrier do so
because their energy is of the order of the barrier (corre-
sponding to the separatrix energy). This obvious signature of
classical thermal activation can also be observed in the quan-
tum open system in Fig. 3. In the quantum isolated system,
on the other hand, the Wigner function remains zero in the
separatrix region throughout the evolution. In this case, tun-
neling can be recognized by the large negative interference

FIG. 5. Classical distribution function of the
system for the indicated times. The horizontal
axis corresponds to x, vertical axis to p. The me-
dium grey shade on the background corresponds
to zero values for the Wigner function, lighter
and darker shades, respectively, to positive and
negative values of W(x,p)
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fringes in the origin of the phase space. Back in the classical
system, we observe that for large ¢ dissipation and diffusion
effects combine to populate the central regions of the right-
hand minimum of the potential. Finally, the overall shape of
the Wigner function becomes increasingly symmetrical, with
the system converging asymptotically to a thermal equilib-
rium state.

IV. DECOHERENCE AND TUNNELING AT ZERO
TEMPERATURE

At T=0 the time integrals in the master equation (2) can
be explicitly calculated [10]. We focus, as before, on Ohmic
environments with spectral density /() =%7Owﬁzwz. After a
rather lengthy calculation, the master equation at 7=0 on the
basis of eigenstates of the isolated system can be written as

p./u: == iA,qu,u,v - 2 {Daﬁxuaxaﬁpﬁv - DBVx/LQ’xﬁVpaB
ap
- D,uwx;l,(rxﬁvpaﬁ + Daﬁxaﬁxﬁvp,ua} + ZEB {‘Yckﬂrx,uaxaﬁpﬁv
a,

+ VX uaX prPap ~ VuaXuaXprPap — YaprapXprPucts (23)

where the time-dependent complex coefficients D,z
=D ,4(t) and y,g="Y,p(t) are given by

Dop=D(Ayp) + il 15 (Ap), (24)
1, ,
Yap=— EQ (Aaﬁ) - lAaﬁy(Aa,B)’ (25)
with
2y, A2A , (A
D(A) = ——=-———| Shi(Af){ — cos Af cosh A
( AT A Shi(Ar) A c08 t cosh At

A
+ sin Az sinh At) - Chi(At)(E cos At sinh Az

+ sin At cosh At) + Si(At)} ,

2

A A
f(A) = 2'y()m |:Shi(Al‘)(K sin Az cosh At

A
—cos At sinh At) + Chi(At)(— A sin Az sinh At

A
+ cos At cosh At) —Ci(Ar) = In X] (26)
and
- 29,A3 A
QX A)=- Azyi e [1 - e‘A’<cos Ar— N sin AI)] ,

A2 A
% [1 - e‘A’<cos At + A sin At” .27

M) =50

As before, A,z=w,—wg, the frequency difference between
eigenstates a and B. The set of coefficients D,z encapsulates
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the effects of diffusion at 7=0, with D(A) representing the
normal diffusion and f(A) the anomalous one. The others
represent the effect of the environment through the dissipa-

tion kernel 7, with Q(A) the frequency shift and y(A) the
dissipation coefficient. The last two reach constant
asymptotic values for Ar>1.

Even though the time-dependent functions (26) reach an
asymptotic constant value for A,z>1 and Ar>1, for the
problem we are going to analyze we will never reach a re-
gime where all the coefficients involved by Eq. (23) are con-
stant. That is, the expressions in Egs. (26) are constant for all
a, when 1>1/A and r>1/A, o= 17/3, due to Eq. (6). As
the functions Si(¢) and Ci(¢) converge toward its asymptotic
values only very slowly, we will never reach this regime.

As for the high-T limit we want to estimate the decoher-
ence time scale. For this purpose we will analyze the deco-
herence process in a simple case: W(x,t=0)=W(x) +W¥,(x),
where

— 72
‘Ifm:Nexp(— %)exp(iiﬂ)x), (28)

with N a normalization constant and & the initial width of the
wave packet.

As was defined in the previous literature (see, for ex-
ample, [2,7]), the effect of decoherence is produced by an
exponential factor exp(—A;,), defined as

l Wint(xvp) |peak
2 [ Wl(x’p)|peak W2(x’p)|peak]”2 ’

where W, is Wigner’s interference term, coming from the
superposition of the two states W ,.

In a very crude approximation one may drop all nonlinear
terms on the Hamiltonian of the system and then estimate the
decoherence time scale from (see Ref. [10] for details)

exp(—Ajp) = (29)

A = 4LID(A) - 2f(A), (30)

where L is the spread of the state. In order to evaluate the
decoherence time tp, we have to solve 1 =A;,(t=tp). From
Eq. (30) it is not possible to find a global decoherence time
scale at T=0. Nevertheless, we can find limits in which we
are able to give different scales for decoherence.
When Ar<<1 (for times k<t<%), we can approximate
A;, using the asymptotic limits of Si and Ci by
8A? L
A = myo{ﬁ(At)z +t(In At+T - 1)] , (31

resulting in a decoherence time bound

1
0

For large frequency A, such as A~ A, it is easy to see that

in At
Apy ~ 2L2yoM 1 + 470(t Ci(Af) - %) (33)

giving a very short decoherence time scale
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FIG. 6. Time behavior of the probability to stay on the left of the
barrier. Time is measured in units of the estimated tunneling time 7.
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Ip
This result will be valid as long as the product LS)/OS 1,
allowing us to neglect the initial transient.

As this decoherence time scale was derived after dropping
all nonlinear terms on the Hamiltonian of the system, it is
then valid only for linear systems. We can only expect it to
be of some use when we begin with a narrow initial state
located at one of the potential minima of the system because
for a while it will evolve as in an harmonic oscillator poten-
tial. After some (short) time the nonlinearities will generate
interferences dynamically [21]. Then, we should expect Eq.
(32) to be only accurate if decoherence happens early
enough, before nonlinear effects kick in.

Numerical results

We have numerically solved Eq. (23) using a standard
adaptative-step-size fifth-order Runge-Kutta method for dif-
ferent parameters of the system and the environment. All
results were found to be robust under changes in the param-
eters of the integration method.

As an example we have chosen (1=100 and V=200 for
the system for which the estimated tunneling time scale is
7= 158.27. As for the high-7 limit, we desire decoherence to
occur before tunneling, so we have set the parameters of the
environment according to atp=7 with a=10. Then from Eq.
(32) yy=a/(87)=0.007 897. We set the frequency cutoff to
A=10V,=2000. With this set of parameters and taking into
account Eq. (27), we see that the effects of the frequency
shift in the initial state can be neglected. In fact, it is easy to

check that for these values, Q2 is 0.32% of Q2. Therefore we
can safely neglect the error induced by taking the initial state
to be given by the vacuum of an harmonic oscillator of fre-

quency £, rather than Q).

Figure 6 shows the probability of staying in the original
well, P(t)=[° _dxo(x,x), in terms of the time measured in
units of the estimated tunneling time 7, while Figs. 7 and 8
show the probability distribution o(x,x) and the Wigner
function of the system, respectively, for the indicated times,
for both the isolated and open systems.
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FIG. 7. Probability distribution o(x,x) for the isolated (left) and
open (right) systems for /=0, r=0.17, and r=0.27 (top) and ¢
=0.57and =7 (bottom). As a helpful reference, the scaled potential
V(x) is drawn in all the plots.

The evolution of the open system at zero temperature
shows similarities but also relevant differences with the
analogous situation in the high-7 limit. For very early times
the probability of staying on the initial side of the potential
decreases quickly, approaching 0.5 as soon as ¢t~ 27. There
are no signs of the particle tunneling back, as expected, since
tp is taken to be smaller than the tunneling time scale. Also,
the asymptotic behavior of P(f) shows no oscillatory behav-
ior as would be expected if tunneling played any role in the
late-time dynamics. Instead we see what looks like a quick
“equilibration” into a state where the particle is equally
likely to be on either side of the potential barrier. Both the
probability distribution plots and the Wigner functions cor-
roborate this picture. From very early times, the negative
regions of W(x,p) in the T=0 case are considerably sup-
pressed when compared with the closed system, suggesting
that tunneling has a small contribution to the evolution. For
t>17/2, W(x,p) becomes positive definite and the system
displays no tunneling oscillations. As in the high-T case, the
separatrix becomes densely populated when cross over starts
being significant. Both this and the fact that for late times
o(x,x) and W(x,p) are symmetrical around x=0 suggests we
should be able to describe the dynamics of the open system
in terms akin to classical activation.

When trying to interpret the post-decoherence behavior of
the open system, several features of its dynamics should be
kept in mind. First, one should emphasize that the initial
condition is clearly not the ground state of the total action,
Eq. (1). As soon as the interaction between the main system
and the environment is turned on, at r=0, the system will
find itself in an excited state. In relation to the new minima
of the potential, the environment will have a nonzero amount
of energy. From a purely classical point of view, this energy
cannot be responsible for the excitation of the particle over
the potential barrier. In fact, the height of the potential in-
creases in relation to the new vacuum, in a way such that the
total energy of the full system is still lower than the barrier
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50

25

separating regions of positive and negative x. This argument
can be made more quantitative in the following way: the full
potential for the system plus environment is V(x,q,)
= Vsys(x) + Venv(qn) + Vint(-x9 qn) with Vsys(x) =-1 /402x2+ )\x4’
V(@) ==,1/120°m>q?, and Vi (x,q,)=2,C,xq,. Classi-
cally, the initial condition is x=—/+/(8\), and because the
environment is at 7=0, ¢,=0. So, for the full action, the
energy terms of the initial condition are given by
Viys=—Q%/(64\)=V, (the minimum of Vi), V=0, and
Vine=0, and so V=V,,. Note that, classically, the value of the
total energy is the same as the energy of the isolated main
particle, even when the interaction with the environment is
“switched on.” This is a consequence of taking zero tempera-
ture for the environment. It is true that when the full system
is considered, we are no longer in the state of the minimum

PHYSICAL REVIEW E 73, 066105 (2006)

FIG. 8. Wigner distribution functions for the
isolated (left) and open (right) systems, for the
indicated times. Axes and gray shades are similar
to the ones defined in Fig. 3.

of energy, V), corresponding to an excited state. Neverthe-
less, this initial energy cannot be responsible for making the
particle cross the potential barrier. The classical trajectory of
a particle going over the barrier would have necessarily x
=0 at some point. If x=0, the value for the total energy must
be positive V>0. Since for the initial state implies V; <0,
this can never happen. In other words, when the interaction
is switched on, the system does “gain” energy relatively to
the new vacuum, but the height of the barrier increases by
the same amount, so classical activation cannot take place.
Note that the fact that there are no fluctuations in the
environment classically at 7=0 plays a crucial role in this
reasoning. Even for small but finite 7, the energy of the
environment would go as 7. By choosing T small enough,
this contribution could always be made smaller than the bar-
rier height. As a consequence and in contrast with the high-T

066105-10



DECOHERENCE, TUNNELING, AND NOISE-INDUCED...

case, we will not be able to describe the evolution of the
quantum system after classicalization by simply taking its
classical exact equivalent. The quantum fluctuations present
in the initial state of the environment must play a role in the
“activation.” One should note that these fluctuations are not
“vacuum fluctuations” of the full system. Nevertheless, the
fact that they have such a clear effect on the evolution of the
system is quite remarkable. Whereas in the high-T case the
quantum and classical oscillators composing the bath had
identical distributions, they behave in a markedly different
way as T—0. The quantum nature of the environment,
which could be ignored at high 7, leads in this limit to im-
portant non-negligible effects.

In terms of the master equation, the quantum fluctuations
of the bath oscillators generate nonzero f(r) and D(r) terms,
making diffusive phenomena possible. This is particularly
true of the anomalous diffusion coefficient f(z), which de-
pends logarithmically on the cutoff A and thus can be con-
siderably large [10]. Diffusion effects induced by quantum
fluctuations are thus responsible for exciting the particle over
the potential barrier. Though this process is very different
from high-7 thermal activation, we conjecture that it may
still be interpreted in terms of a modified classical setting.
The key ingredient is that the classical bath should mimic the
properties of the quantum 7=0 environment. Considering the
classical and quantum versions of the noise kernel v(s), it is
possible to show that a bath of classical oscillators with a
frequency-dependent temperature T(w)=%w/2 should repro-
duce the effects of the initial quantum state. In fact, for this
choice of classical environment one obtains f(¢) and D(z)
terms identical to those of the T=0 quantum case. Our main
point is that after decoherence takes place, a quantum open
system at 7=0 should behave as a classical open system in
contact with a classical bath whose oscillators are excited in
a way that reproduces the fluctuations of the corresponding
quantum environment. In order to fully understand this cor-
respondence, one should simulate a classical system interact-
ing with this type of generalized bath, reproducing the results
of the quantum case and obtaining the same time scales for
fluctuation-induced activation [12,22]. We will leave a de-
tailed study of this type of system to a future publication
[23].

A second question concerns the interplay of decoherence
and excitation processes in the 7=0 case. For both quantities,
the value of the environment frequency cutoff A seems to
play an important role, affecting both the decoherence time
and the excitation process in the same direction. Since we do
not have explicit estimates of the “activation” time in terms
of A, it is hard to predict whether there is a regime for which
decoherence happens fast enough and excitation is consider-
ably delayed. Numerical results presented in Figs. 9 and 10
suggest that this is not possible. The two figures show, re-
spectively, the probability to stay on the original well and the
energy of the main system for several choices of the cutoff.
A varies from the smallest frequency present in the system—
i.e., the difference between the first-excited- and ground-state
energy levels, E;—E,, and A=10V,. Also shown are two
intermediate cutoff values A=V,,/10 and A=V, By lowering
A, the “activation” time is indeed postponed, but so is deco-

PHYSICAL REVIEW E 73, 066105 (2006)

A=V0/10

FIG. 9. (Color online) Probability to stay in the original well for
different values of A (other parameters are fixed as in previous
plots). The crosses are a subset of the simulation data (not all data
points are shown so that the fit curves can be visible). The solid
lines correspond to nonlinear )? fits of the data to the expression in
Eq. (35). Time is measured in units of the closed-system tunneling
time 7.

herence. In this situation the particle is simply able to tunnel
back and forth between the two minima for a longer period.
Higher values of the cutoff, on the other hand, lead to both
fast decoherence and fast “activation.” As a result we were
never able to localize the particle in one of the wells, with
tunneling and ““activation” being simultaneously suppressed.

The dependence of the activation time on the environmen-
tal cutoff frequency can be made more quantitative by fitting
the probability for the particle to remain in the original well
to a simple evolution expression. In Fig. 9 a selection of
simulation points (crosses) is shown against a fit (solid
curves) of the form

1 1
P(r) = > + > cos(mt/ T)exp(—t/t,y). (35)

The analytical expression fits the data extremely well, allow-
ing us to determine for each choice of A the two relevant

(EW),,
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FIG. 10. Evolution in time of the mean energy of the main
system for the same set of parameters as in Fig. 9 (time in units of
the tunneling time 7). The solid lines correspond to the smallest
value of A, the straight dashed line to A=V;/10. Dotted lines are
larger values of the cutoff: A=10V, on top and A=V, below.
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FIG. 11. (Color online) Log-log plot of the activation time 7, as
a function of A/V,,.

time scales 7and #,.. In Fig. 11 the activation time measured
in this way is shown as a function of the cutoff parameter.
This figure includes results for a larger number or curves,
spanning several orders of magnitude of A. As expected the
activation time decreases initially as the value of the cutoff
increases. A change of regime is reached when A is of the
order of magnitude of the height of the potential barrier V.
For all values of A <V, tunneling is still observed, and in-
deed, the tunneling time, as measured by 7 obtained from the
fit, deviates very little—Iless than 5%—from the value for the
isolated system. For higher values of A tunneling is com-
pletely suppressed, with the oscillating term in Eq. (35) be-
coming irrelevant for the fit. This suggests that A =V, can be
taken as the threshold for the fluctuations to play the princi-
pal role in the evolution, with excitation becoming the domi-
nant processes in the dynamics in this regime. In all cases,
the long-time-limit value for the probability seems to be 0.5
to a very good accuracy. As an extra check we refitted the
data, allowing the asymptotic value of P(¢) as an extra free
parameter. In the whole range of A studied, the final prob-
ability always differed by less than 0.8% from 0.5. The val-
ues for 7, obtained in the fit with the extra parameter
changed by less than 6% when compared with the results
shown in Fig. 11.

Similar properties can be observed in terms of the energy
of the system in Fig. 10, where we plot the mean energy of
the (main) system as a function of time, for the same set of
parameters used in Fig. 9. Clearly, the “activation” process
for high-frequency cutoff is accompanied by a fast increase
in the energy of the system. Once again, the fact that the
energy of the main system is considerably lower than the
barrier height for low A supports the interpretation that quan-
tum fluctuations are behind the excitation mechanism.

Finally, we looked at how the value of vy, affects the over-
all pattern of evolution, in the case of a cutoff A=10V,. We
found that as 7y, decreases, as expected, tunneling reappears
and the activation time increases as shown in Fig. 12. Inter-
estingly the value of the measured tunneling time 7 varies
with 7y,. For very small values of the coupling, we obtain 7
~ 1 in units of tunneling time. This value increases with
up to 50% of the original tunneling time. At this point, tun-
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FIG. 12. (Color online) Log-log plot of the activation time 7, as
a function of 1y, for A=10V,,.

neling is suppressed and, as in the case discussed above, the
oscillatory term in the fit can be ignored. This suggests that
renormalization effects are likely to play a role in this case,
as the strength of the interaction with the environment be-
comes larger. Also worth remarking is the fact that within the
region of parameters tested, 7, seems to vary as the inverse
of 7y,. This is reminiscent of Egs. (32) and (34), indicating
once again that decoherence and activation for this type of
system are closely related. Overall, a very rich structure
seems to emerge from the interplay of several physical
mechanisms taking place simultaneously at 7=0. A detailed
numerical study of these will be the focus of a future publi-
cation.

V. FINAL REMARKS

We have analyzed a simple time-independent bistable sys-
tem by following the quantum evolution of a particle initially
localized at one of the minima of the potential when coupled
to an external environment at both zero and high tempera-
tures. When isolated, the particle undergoes tunneling
through the barrier. For the open system, we described the
effects of dissipation and diffusion on its dynamics in terms
of three main phenomena: decoherence, tunneling, and ther-
mal activation. We estimated the corresponding time scales
analytically and showed that, depending on the parameters of
the system and its environment, these processes can be made
to act independently of the evolution. The numerical results
confirmed the analytical estimates and allowed us to illus-
trate the distinct properties of the three types of process in-
volved in the evolution.

For the closed system, the numerical simulations dis-
played all the expected features of standard quantum tunnel-
ing, with the wave packet bouncing back and forth between
the two vacua, with a rate given by the estimated tunneling
time 7. In the high-T regime, for an appropriate region of
parameter space, the open system was shown to evolve in a
fundamentally different way, with the probability for the par-
ticle to be found in the original well decaying at a much
slower rate. With the basis of the relevant time scales deter-
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mined analytically, we explained the absence of tunneling in
this case as a consequence of early-time classicalization at
tp. The later-time evolution, on the other hand, was inter-
preted as a result of classical thermal activation. This picture
was confirmed by looking at the evolution in terms of the
space-probability distribution and the Wigner function. In
contrast with the tunneling dynamics, the Wigner function
for the open system became strictly positive soon after the
decoherence time, evolving classically for most of the simu-
lation time. For late times, the properties of the Wigner func-
tion were characteristic of thermal activation, with the phase-
space separatrix becoming heavily populated as the particle
crossed over the potential barrier. As an extra check, we
evolved a similar classical system and confirmed that the
concentration of probability around the separatrix at z,;, does
signal the onset of thermal activation. It is worth mentioning
that the environment can, for both high and zero tempera-
tures, be tailored so as to have tunneling before decoherence
or in fact any other permutation of the three processes de-
scribing the dynamics. This can be easily seen by comparing
the estimated time scales for each process. Though not
shown here, we have checked numerically that all these cases
are indeed possible.

The evolution of the open system at zero temperature
shows subtly different and, in some ways, unexpected prop-
erties. Tunneling is also undoubtedly quickly suppressed, as
can be seen by inspecting either the probability of the par-
ticle to remain on the original well or the evolution of its
Wigner function. In both cases we observe typical classical
features since very early times. Nevertheless, at 7=0, the
quantum fluctuations of the environmental oscillators, absent
in a purely classical evolution, lead to nonzero diffusive
terms. Their effect is felt primarily through the anomalous
diffusion coefficient f(z) that can have a large magnitude. We
conjecture that these nontrivial diffusion effects induced by
the quantum environment are large enough to excite the par-
ticle over the potential barrier. This is to be contrasted with
the case where the environment is classical, forbidding any
kind of activation phenomena. Though the late-time evolu-
tion in the presence of a quantum vacuum is by nature very
different from high-7" thermal activation, we suggest that it
could still be interpreted in terms of a purely classical setting
if the environment oscillators are described by a particular
nonthermal statistical state. We will pursue this line of in-
quiry in depth in a forthcoming publication.
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APPENDIX

Written on the basis of the eigenstates |u) of the isolated

system Hgy = ’—+V(x) Eq. (2) reads
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p,uvz - lA,u,Vp,uV_ 2 paﬁlf dTV(T)Aa,By(T)
0

apy

f dTﬂ(T)Baﬁy(T)] )

The time-dependent coefficients A and B are sums of four
terms of the form x#wxaﬁe’AWT

ALp7)

A
Ao x ok 138y
Baﬂv( 7) -

= XuyXyalpe™

A +xﬁyxw ” —ipy,

Thus, all the time integrals appearing in the master equation
have the form

- x,uafxﬂv

t 1
fdrv(r)e’AaﬁT orJ dry(r)eas”,
0

0

These integrals can be explicitly calculated only if the spec-
tral density of the environment is specified. We have sup-
posed an Ohmic environment, for which I(w)=2vy%=— A2
where A represents a high-frequency cutoff and v, is a con-
stant characterizing the strength of the interaction with the
environment (we have set the mass equal to 1). For this
environment the temperature-independent » integrals can be
easily calculated to be

t
f drp(De = QA1) + 1A ¥(A, 1),
0
where

- 29A° ( A )
2 _ —At _Aa
O (A1) = i Al 1 —e | cos At A sin Az | |,

—A2 1-e A’(cos Ar+ é sin At)
+A? A

are the frequency-shift and dissipation coefficients, respec-
tively.

The v integrals are not so easily calculated, and so here
we resort to a Markovian approximation. We will assume
A>A, gV a,B. Thus, the kernels are strongly peaked around
t=7 and the environment has a very short correlation time.
Therefore the integrals can be extended over the entire inter-
val [0,). If we further assume that the temperature is very
high—that is, 7> A,V a, f—the v kernel is reduced to aod
distribution function and the time integrals are 31mply

YA, 1) =

A
7ETI(A)u)trl(%) ~2y,T=D.

Finally, after some algebraic manipulations, the master equa-
tion reads as Eq. (19):

1Actually this last assumption accounts for the former one, for the
high-temperature limit reduces to a Markovian approximation.
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p.;u} == E M,uvaﬁpaﬁ’
aB
where the time-independent coefficient M is
MMVCVB = lﬁaﬂaﬁVAaB + Ll_ujaﬁ - lN,uvaﬁ’
with
Lyvap= 2 [xﬂyxyagv,BK;a —XpaXayKp, = x,ua'xBVK;a
Y

+ X% 000Ky )
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NMMB = E [xuvxw‘sVBSW - x,uaxaysﬁv - xuaxﬁwgw
Y

+ XX 3 00uS iyl

Kt_;B=K_F(Aaﬁ)’ Saﬁ= S(Aaﬁ)’

K*(A) = gl(A)coth<'82—A) + AY(A),

S(A)=AY(4),
AZ
Y(A) = NNz, A2
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